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A B S T R A C T   

Evaluation of the stability and determination of the Critical Slip Surface (CSS) of soil slopes are salient topics in 
geotechnical engineering. On the other hand, the stability and CSS are not only affected by soil heterogeneity but 
also by the boreholes’ location and method of predicting soil parameters in the domain of analysis. The un-
conditional simulation in which known data and its location are not incorporated may lead to results far from 
reality. Moreover, in some conditional simulations, the borehole data are directly mapped into the analysis 
section without taking the location of the known data into account, which can either overestimate or underes-
timate the stability of the slope. In the current study, the Finite Element Method (FEM) is coupled with the 
geostatistical method to evaluate the reliability characteristics and CSS distribution with consideration of the 
known data, location of boreholes, uncertainty of surcharge load, and soil heterogeneity. The results of a real 
case demonstrate that in comparison to the unconditional simulation, utilizing the conditional simulation im-
proves the distribution of Factor of Safety (FS) by up to 14% while decreasing the related standard deviation by 
4% to 40%. Moreover, conditional simulation offers a significant reduction in uncertainty of the slip surface and 
unsafe distance from the edge of the slope. Besides, it is concluded that soil heterogeneity has a major impact on 
CSS distribution and induces the local CSS, which cannot occur on a homogeneous slope.   

Introduction 

The instability of soil slopes can cause great amounts of damage and 
loss of life. Hence, it is vital to assess the stability of the slopes and 
associated risks. The analysis of slope stability involves estimating the 
safety index and determining the location of the CSS. To assess the 
performance of the soil slopes, considering not only the uncertainty of 
soil properties and applied loads but also the known data and its location 
are essential. There are several different methods available for slope 
stability analysis. The most commonly adopted ones are the Limit 
Equilibrium Method (LEM), Limit Analysis Method, and FEM. 

Although the traditional deterministic stability analysis is widely 
used in engineering practice, it cannot explicitly account for the various 
geotechnical-related uncertainties and provide no information on the 
variability of the safety margin. In the early’70s, a reliability-based 
method is proposed as a complementary measure to the FS to aid 

engineers in making acceptable designs. Then due to the disability of the 
probabilistic method to take the soil heterogeneity into account, in the 
early’90s, Griffiths and Fenton [1] proposed a new probabilistic analysis 
approach, namely the Random Finite Element Method (RFEM). After 
that, several kinds of research have been conducted to assess the reli-
ability characteristics and the location of CSS in soil slopes [2,3]. For 
instance, Griffiths et al. [4] investigated the probability of slope failure 
using both two-dimensional and three-dimensional RFEM probabilistic 
analysis. Results indicated that the probability of failure based on 2D 
analysis is independent of the slope length, while the probability of 
failure based on 3D analysis depends on the slope length. In another 
study, Duncan [5] indicated that the conservativeness of 2D analysis is 
primarily a result of the selection of the most pessimistic section of a 
slope. However, the most pessimistic section of a slope may not be 
intuitive, especially for cases with random soils [6]. A recent study 
conducted by Ouyang and Liu [7] presents an effective approach for 
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model updating that combines conditional random field with the 
Bayesian updating structural reliability methods algorithm to integrate 
multi-type observations. The results indicated that the proposed 
approach can update the probability distribution of spatially varying soil 
parameters and update the slope reliability using multi-type observa-
tions with reasonable calculation efficiency. 

The soils are extremely variable within relatively short distances and 
rarely homogeneous. Spatial variability is an inherent characteristic of 
soil and an important issue for geotechnical studies. Several types of 
research have been conducted to evaluate the influence of soil hetero-
geneity on the reliability index (β), but the uncertainty of CSS has not 
been given enough consideration [8]. The CSS, which plays a key role in 
risk assessment and system reliability analysis of slopes, refers to the slip 
surface with the minimum FS. Determination of the CSS distribution 
hence has several applications are given as follows [9]. First, estimation 
of the key failure modes or representative slip surfaces, which are known 
as key inputs in system reliability or risk evolution. Second, estimation 
of the influential range (namely the area occupied by the CSS) to 
improve the efficiency of site investigation since the failure mechanism 
is significantly affected by soil parameters in this area. Third, providing 
useful information for inferring the correlation length of soil properties 
in back analyses as described in the work of Hicks and Spencer [10]. 
Albeit significant, the influence of spatial variability of soil properties on 
CSS distribution is rarely assessed. Jiang et al. [11] developed Monte 
Carlo Simulation (MCS)-based approach which facilitates the slope 
system reliability analysis using representative slip surfaces and multi-
ple stochastic response surfaces in spatially variable soils. Sarma and 
Tan [12] developed a new method for estimating CSS within the 
framework of the LEM. Also, the method provided information on the 
critical acceleration for the calculation of seismic displacements. Sun 
et al. [13] presented a method in which the spline curve was used in 
conjunction with a genetic algorithm to identify the CSS. The major 
advantages of the presented method were its relatively low cost, ease of 
application, and shorter execution time. Xue and Gavin [14] presented a 
new method for extracting CSS and reliability index of soil slopes. The 
proposed method used a powerful genetic algorithm to find the CSS and 
reliability index simultaneously, taking less computation than other 
techniques. 

Aside from computation time and cost, the FEM has well-known 
benefits, including (a) no special assumptions regarding the shape or 
location of the CSS are required; (b) information about deformations at 
working stress levels can be offered; and (c) boundary and loading 
conditions, complex material behavior, and problem geometry can be 
considered. The applicability of FEM for stochastic stability analysis of 
soil slopes has been investigated in several works, as in the following 
short note. Chen et al. [15] focused on combined Monte Carlo simulation 
and three-dimensional (3D) dynamic large-deformation finite-element 
analysis using the coupled Eulerian-Lagrangian method to investigate 
the whole runout process of landslide induced by the earthquake in 
spatially varying soil. The results showed that the calculated mean 
runout distance using the presented method is at least 16.1 % higher 
than that calculated using three-dimensional analysis. Liu et al. [16] 
investigated the coupled effect of strain softening and spatial variability 

on the occurrence, evolution, and runout behavior of landslides induced 
by seismic loads, using the 3D large-deformation finite-element method. 
The results show that both the strain-softening behavior and spatial 
variability of soil dramatically affect the sliding velocity and runout 
distance. Li et al. [17] presented an efficient Unconditional Random 
Finite Element Method (URFEM) for stability assessment by combining 
the URFEM with an advanced MCS technique. One of the superiorities of 
the presented method was that it quantifies the relative contributions of 
the slope failure risk at various probability levels to the total risk of the 
system. Cheng et al. [18] compared the locations of the CSS obtained by 
the LEM and FEM strength reduction method. In the case of homoge-
nous, cohesive soil slopes with no friction angle, the results obtained 
from both methods were in good agreement with each other. 

The available literature did not simultaneously take into account the 
real site data, borehole location, the uncertainty of surcharge load, and 
the uncertainty associated with soil properties. The goal of this study is 
to tackle these issues via stochastic analysis of the soil slope stability and 
CSS using a geostatistical conditional simulation system, which is the 
first of its kind. To do this, a real soil slope with fifteen boreholes was 
analyzed deterministically utilizing an elastoplastic finite element-based 
program coded in MATLAB. Fourteen arbitrary sections were considered 
to assess the influence of the borehole’s location on the stability of soil 
slope, identify the most critical section, and eliminating the drawbacks 
of the two-dimensional analysis in determining the most pessimistic 
section of a slope that may not be intuitively clear. Then, a reliability 
assessment was done by employing the URFEM and Conditional Random 
Finite Element Method (CRFEM) by considering efficient soil properties 
and surcharge load as a stochastic parameter. Finally, the reliability 
characteristics and variations of the CSS for different simulation 
methods (i.e., unconditional and conditional) are compared, and the 
effect of different soil parameters on the CSS variation is investigated. 

Methodology for stochastic analysis 

In the current study, stochastic analysis of CSS and stability of soil 
slopes is presented using geostatistical conditional simulation. To 
address these issues, the geostatistical approach is implemented in FEM 
to take the boreholes’ location and soil heterogeneity into account. For 
this purpose, effective parameters of soil, which are identified from 
sensitivity analysis, are modeled as stochastic parameters. A brief 
explanation of the selected methodology is described in the respective 
subsections. 

Unconditional simulation 

The soil properties are spatial variables and vary from one point in 
the field to another. This leads to the necessity of representing the soil 
parameters as characterized by random fields. The spatial variability of 
soil properties can be modeled using the theory of random fields. On the 
other hand, the values of a soil parameter in different parts of a field are 
correlated with each other. The spatial correlation of soil parameters can 
be characterized by auto-correlation [19]. In this research, the 2-D form 
of the Markov correlation function was used as follows: 

ρ(x, x′) = exp
(

−
|x − x′

|

lx
−
|y − y′|

ly

)

(1) 

where x and x’ are spatial coordinates, lx and ly are autocorrelation 
lengths in horizontal and vertical directions, respectively. Due to the 
significant influence of the autocorrelation lengths on the stability of 
geotechnical problems, it would be more appropriate to evaluate them 
from known data [20–22]. The sample autocorrelation function (ACF) 
can be a simple and useful tool for this purpose. The ACF is the graph of 
the sample autocorrelation at lag k, rk, for lags k = 0, 1, 2, …, m, where 
m is the maximum number of lags allowed for obtaining reliable esti-
mates. The rk is defined as follows [23]: 

Table 1 
Theoretical autocorrelation functions used to determine the autocorrelation 
lengths.  

Model No. ACF function Autocorrelation lengths 

1 
ρΔz =

{
1 −

|Δz|
a

for |Δz|⩽a

0 for |Δz|⩾a 

a 

2 ρΔz = e− |Δz|/b 2b 
3 ρΔz = e− (|Δz|/c)2 ̅̅̅

π
√

c 
4 ρΔz = e− |Δz|/d(1+

|Δz|
d

)
4d  
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rk =

∑N− k

i=1
(Xi − X)(Xi+k − X)

∑N

i=1
(Xi − X)2

(2) 

where Xi and Xi+k are the values of the variable at points i and i + k 
respectively; and X is the mean value of the variable. Vanmarcke [24] 
suggested that autocorrelation lengths can be determined by fitting one 
of the models to the sample ACF, as given in Table 1, where Δz is the 
depth interval. 

To combine random field theory with the FEM, it is necessary to 
assign a specific value to each element by a method called discretization 
of a random field. There are several methods to discretize a random field 
in the literature [25]. In this research, the covariance matrix decom-
position technique [26] was utilized for this purpose using the following 
steps: 

1. Estimation of the correlation matrix ρ(x1,x2), using Eq. (1). 
2. Obtaining the Cholesky decomposition of ρ(x1,x2) by the lower 

triangular matrix A as follows: 

AAT = ρ(x1, x2) (3) 

3. Define two independent standard normally distributed random 
fields from the following equation: 

Gi = AZi(i = 1, 2) (4) 

Where Z is the standard normal distribution function. 
4. If two random variables correlate, then it is essential to estimate 

the correlated Gi using steps 4 and 5: 

LLT =

[
1 ρc,φ

ρc,φ 1

]

(5) 

5. Estimating the cross-correlated random c and φ fields as follow: 
{

Gc
Gφ

}

=

[
L11 0.0
L21 L22

]{
G1
G2

}

(6) 

The Gc and Gφ should be utilized instead of G1 and G2 in Eq. (7). 
6. Using mean and standard deviation for each random parameter, 

the realization can be carried out as follow: 

Xi = μx(xi)+ σx(xi)Gi (7) 

Where xi is a correlated parameter randomly. 

Conditional simulation 

Assessment of uncertainty is essential for topics that have consider-
able interaction with soil particles. In geotechnical applications, it is 
common to evaluate the soil parameters using the limited data extracted 
from boreholes. Unconditional random fields discard these data and will 
cause large variability in the stability statement. However, in some 
conditional simulations, the boreholes’ data are directly mapped into 
the analysis section without implementing the location of the samples, 
which can either overestimate or underestimate the stability of the 
slope. The geostatistical technique offers a framework to incorporate the 
known data and model the soil uncertainty [27]. The key purpose of 
implementing this technique is to evaluate the soil properties between 
boreholes’ samples, which generally includes samples that represent a 
small part of the domain [28]. 

The estimation of correlation between samples along a specific 
orientation is vital in geostatistics analysis, which is usually estimated 
by the semivariogram. The experimental semivariogram for a set of data 
Z(xi), i = 1,2,… can be defined as [29]: 

γjj(h) =
1

2Njj(h)
=

∑N

i=1

[
Zj(Xi) − Zj(Xi + h)

]2 (8) 

where Njj(h) is the number of pairs of data points separated by the 

particular lag vector h. The cross-semivariogram for random functions 
Zj(x) and Zk(x), which described the spatial dependence between cross- 
correlated variables, can be expressed as follow: 

γjk(h) =
1

2Njk(h)
=

∑N

i=1

{[
Zj(Xi) − Zj(Xi + h)

]
[Zk(Xi) − Zk(Xi + h) ]

}
(9) 

where Njk(h) is the number of pairs of data points, separated by h, 
which have measured values of both random functions Zj(x) and Zk(x). 

The geostatistical interpolation technique is known as kriging. It is 
often preferred due to its accuracy and efficiency and is regarded as a 
univariate geostatistical tool to estimate an unknown value at a partic-
ular location. For an unknown field point x0, the ordinary kriging esti-
mator Z*(x0) based on the known data Z (xi), i = 1, 2…, N is defined as 
the linear unbiased estimator [30,31]: 

Z*(x0) =
∑N

i=1
λiZ(xi) (10)  

σ2
OK = βOK − γ(x0, x0)+

∑N

i=1
λiγ(x0, xi) (11) 

where Z* and σok are the mean and standard deviation values in 
geostatistical estimation by the ordinary kriging, respectively; Z(xi), i =
1, 2…, N has known values of the parameter (for instance, unit weight); 
λ and βOK are the ordinary kriging coefficient and the Lagrangian 
parameter, respectively which are as follows: 
⎡

⎢
⎢
⎢
⎢
⎣

λ1
λ1
⋮
λN
βOK

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

γ(x1 ,x1)
γ(x1 ,x2)

⋯ γ(x1 ,xN ) 1
γ(x2 ,x1)

γ(x2 ,x2)
⋯ γ(x2 ,xN ) 1

⋮ ⋮ ⋱ ⋮ ⋮
γ(xN ,x1)

γ(xN ,x2)
⋯ γ(xN ,xN ) 1

1 1 ⋯ 1 0

⎤

⎥
⎥
⎥
⎥
⎦

T⎡

⎢
⎢
⎢
⎢
⎣

γ(x0 ,x1)

γ(x0 ,x2)

⋮
γ(x0 ,xN )

1

⎤

⎥
⎥
⎥
⎥
⎦

(12) 

here γ(xi,xj), i,j = 1,2,.., N is the semivariogram between known 
points, and γ(x0,xi), i = 1,2,.., N is the semivariogram between known 
points and unknown point which are expressed as follows: 

γ(x0, xi) = C0 +C
[(

h
a

)]

(13)  

a =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2
1[cos2(θ − φ)] + A2

2[cos2(θ − φ)]
√

(14) 

where h and c are the distance between two points and the structural 
variance, respectively. a and c0 are the range and the nugget, respec-
tively; θ and φ are the angles corresponding to the maximum parameter 
changes and the angles between pairs of points relative to the vertical 
direction, respectively. A1 and A2 are the larger effective length and 
smaller effective length, respectively of the linear semivariogram model. 

A multivariate geostatistical approach (i.e., Cokriging) is performed 
to calculate two or more co-regionalized variables (i.e., regionalized 
variables that show cross-correlation). The real advantage of Cokriging 
is to reduce calculation variances where one or more of the regionalized 
variables (i.e., random variables with space coordinates) are “under-
sampled” and correlated with each other. Undersampling refers to a 
situation in which the number of the primary variable to be evaluated (e. 
g., soil shear strength) is less than the others (e.g., soil water content), 
usually at a subset of the sampling points. Generally, between V corre-
lated variables, the linear ordinary cokriging estimator for variable u at 
an unknown field point x0 is [30,31]: 

Z*
x (x0) =

∑V

l=1

∑nl

i=1
λilZi(xi) (15)  

σ2
CK =

∑nl

j=1
λjlγ(xj, x0)+Ψx − γxx(x0, x0) (16) 

here, Zx* and σCk are the mean and standard deviation values in 
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geostatistical estimation by the ordinary cokriging, respectively; Z (xi) is 
the known value of the parameter (for instance, cohesion); λ and Ψx are 
the ordinary cokriging coefficient and the Lagrange multipliers, 
respectively which are as follows: 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1
x

λ2
x

⋮
λnxx

λ1
y

λ2
y

⋮
λnyy

Ψx

Ψy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γt
xx γt

xy

1
1
⋮
1

0
0
⋮
0

γt
yx γt

vv

0
0
⋮
0

1
1
⋮
1

11....1 00....0 0 0
00....0 11....1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dxx

dxy

1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17) 

where x and y are two variables of parameters in the geostatistical 
analysis (for instance, cohesion and friction angle); γt

xy interprets a 
semivariograms matrix (containing cross-semivariograms where x  ∕= y) 
between sampling points in a neighborhood, that these parameters are 
denoted as follows: 

γt
xy =

⎡

⎢
⎢
⎣

γxy(x1, x1) γxy(x1, x2) ⋯ γxy(x1, xny)

γxy(x2, x1) γxy(x2, x2) ⋯ γxy(x2, xny)

⋮ ⋮ ⋱ ⋮
γxy(xnx, x1) γxy(xnx, x2) ⋯ γxy(xnx, xny)

⎤

⎥
⎥
⎦ (18)  

dxx =

⎡

⎢
⎢
⎣

γxx(x0, x1)

γxx(x0, x2)

⋮
γxx(x0, xnx)

⎤

⎥
⎥
⎦ (19)  

dxy =

⎡

⎢
⎢
⎣

γxy(x0, x1)

γxy(x0, x2)

⋮
γxy(x0, xny)

⎤

⎥
⎥
⎦ (20) 

here, dxx and dxy are semivariograms vectors for variable x; γxx and 
γxy are the direct and cross semivariogram, respectively, and both of 
them are exponential models which and defined as follows: 

γ(xi, xn) = C0 +C
[

1 − exp
(
− h
a

)]

(21)  

Execution process of reliability analysis 

In previous parts, the processes of generating conditional and un-
conditional simulations were described. The principal emphasis of this 
part is on the implementation of the presented method for the stochastic 
stability assessment of soil slopes. The execution process is schemati-
cally demonstrated in Fig. 1 and can be defined as follows:  

(1) Estimating the soil properties through the field and laboratory 
tests  

(2) Discretization of the geometry 

(3) Calculating soil properties on the unsampled levels and all levels 
of mapped boreholes utilizing the geostatistical approach. 

(4) Conducting conditional simulation for soil parameters selected 
via sensitivity analysis. 

(5) Creating a random variable for surcharge load. 
(6) Estimating the total stress and the shear strength for each element 

of the soil. 
(7) Calculating the FS and CSS via strength reduction analysis. 

(8) Obtaining the reliability index and CSS distribution by repeating 
steps (2) to (6) for the optimal number of realizations. 

Case study 

In this section, a real soil slope is considered to evaluate the effi-
ciency of the proposed method for stochastic stability and CSS distri-
bution assessment. For this purpose, deterministic slope stability 
analyses are pursued by stochastic analysis of slope stability and CSS. 

Fig. 2. Aerial view of the studied soil slope.  
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Then, the results of CRFEM and URFEM were compared to assess the 
influence of conditional random field on the CSS and reliability index. 
Finally, the influence of different soil parameters on the location and 
scale of the CSS was investigated. 

The site characterization and geotechnical soil properties 

The actual case study employed in this paper is situated in Shiraz, 
located in southwest Iran, as depicted in Fig. 2. To determine soil 
properties, fifteen boreholes up to the depth of 26.0 m are drilled, as 
illustrated in Fig. 3 and tabulated in Table 2. For all soil samples, the 
textural and mechanical properties are obtained through field and lab-
oratory tests, of which some of the most important are listed in Table 3. 
According to laboratory and boreholes data, the soil was normally 
consolidated silty clay and the groundwater level was below 26.0 m. 
One of the main aims of selecting the site was that the whole domain of 
the soil slope satisfies the generalized plane strain conditions. 

Development and verification of a coded program 

In this research, a finite element–based program is coded in MATLAB 
for the stability analysis of soil slope utilizing eight-node quadrilateral 
elements. The program is developed for the 2D plane strain analysis of 
elastic-perfect plastic with a Mohr-Coulomb yield criterion. The bottom 
boundary was considered fully restrained, while others were restrained 

horizontally. The general conditions of the model, such as its geometry, 
finite element mesh, and boundary conditions, are illustrated in Fig. 4. 
Also, the soil parameters implemented in the deterministic analysis and 
the related CSS are shown in Table 4 and Fig. 5, respectively. An iden-
tical model was used for verifying the coded program using the finite 
difference software package FLAC 7.0. Comparisons of FS and maximum 
displacement obtained from both methods are given in Table 5. The 
shear strain rate contour extracted from Flac 7.0, which is commonly 
known as the sliding zone [16], is illustrated in Fig. 6. 

Stochastic analysis 

The stochastic stability analysis of the presented case study is taken 
into account in this section within the following subsections. Firstly, the 
selection of effective parameters of the soil that significantly influence 
the stability of the slope is offered. Secondly, the URFEM and CRFEM are 
presented to assess the influence of conditional simulation on the reli-
ability index and CSS. Finally, the sensitivity analysis is presented to 
calculate the required number of simulations. 

Table 2 
The coordinates and depth of the boreholes.  

BH. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

X coordinate(m)  46.0  89.0  91.0  64.0  85.0  52.0  42.0  58.0  11.0  15.0  37.0  55.0  80.0  72.0  49.0 
Y coordinate(m)  71.0  60.0  122.0  132.0  132.0  112.0  91.0  41.0  37.0  12.0  16.5  16.5  6.0  33.0  33.0 
Depth(m)  26.0  26.0  25.0  25.0  26.0  25.0  26.0  25.0  26.0  25.0  26.0  25.0  26.0  25.0  25.0  

Table 3 
Geotechnical data of the site from the boreholes.  

BH.  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

c (kN/m2) Min.  2.0  15.0  11.0  7.0  10.0  13.0  13.0  15.0  9.0  13.0  10.0  13.0  4.0  27.0  10.0  
Max.  14.0  22.0  30.0  30.0  19.0  27.0  18.0  30.0  10.0  30.0  14.0  32.0  20.0  30.0  30.0 

ϕ (Deg.) Min.  24.0  19.0  21.0  19.0  24.0  19.0  20.0  17.0  15.0  23.0  23.0  18.0  12.0  18.0  21.0  
Max.  37.0  25.0  38.0  37.0  27.0  38.0  38.0  33.0  29.0  33.0  25.0  37.0  35.0  24.0  38.0 

γ (kN/m3) Min.  16.8  16.8  17.1  16.7  16.9  16.8  17.1  16.9  16.9  16.9  16.9  16.8  16.6  16.8  16.8  
Max.  20.5  17.8  20.4  20.2  19.8  20.2  20.4  17.7  20.5  19.8  20.6  20.4  20.6  17.2  20.5  
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Fig. 4. The geometry of the modeled slope, finite element discretization, and boundary conditions.  

Table 4 
The selected soil parameters used for deterministic analysis.  

Soil parameters c (kN/m2) ϕ (Deg.) γ (kN/m3) E(kN/m2) υ 

Value  15.0  20.0  20.0 3.5e4  0.3  
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Sensitivity analysis for determining effective soil parameters 

The determination of the effective soil parameters is a necessary step 
before the stochastic analysis. To do this, a sensitivity analysis was 
conducted by increasing each parameter by 10 % while the other pa-
rameters were held constant. As shown in Table 6, the unit weight (γ), 

cohesion (c), and friction angle (φ) are the most important parameters 
on the FS, while Poisson’s ratio (ν) and modulus of elasticity (ES) have no 
significant effect on it. 

Stochastic analysis by URFEM 

The unconditional random fields were made for soil parameters that 
were determined by sensitivity analysis. The parameters were modeled 
within four standard deviations (σ) of difference from the mean (μ), 
using truncated normal probability distribution functions with the μ and 
σ tabulated in Table 7, extracted from boreholes data listed in Table 3. 
The correlation coefficient between cohesion and friction angle was 
considered ρc,φ = -0.5 [32]. 

Due to the availability of sufficient soil data in a vertical direction, 
the ly was estimated using the ACF, and single exponential curve model 
(i.e., model No.2 in Table 1) described in section 3.1. A typical sample of 
the ACF model for the soil parameters of BH.3 is illustrated in Fig. 7 and 
the fitting parameter values for all boreholes are presented in Table 8. 
According to the results, the ly was considered 3.5 m as twice the mean 
value of parameter b obtained from boreholes, which was within the 
range of (0.1–7.2 m) estimated by various studies [33]. Furthermore, lx 
was considered as 30 m since the horizontal correlation length is usually 
much larger, and its influence is much less important compared with the 
vertical correlation length [34]. 

The random field of different parameters in the typical realization is 
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Fig. 5. The CSS obtained from the deterministic analysis.  

Table 5 
Comparison of the results.  

Method FS Maximum displacement (cm) 

Proposed model  1.30  1.70 
FLAC  1.24  1.59  

Fig. 6. The shear strain rate of a modeled slope estimated by FLAC.  

Table 6 
Determination of influent soil properties.  

Input parameter Change in FS (%) (%) 

γ  6.8 
c  5.2 
φ  4.1 
ES  0.3 
ν  0.2  
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depicted in Figs. 8 to 10. Besides the soil parameters, the surcharge load, 
which has an important role in the stability and CSS distribution of soil 
slopes, was considered a random variable with a normal distribution, as 
illustrated in Fig. 11. 

Stochastic analysis by CRFEM 

The geostatistical method is applied to predict the fluctuation of soil 
properties between the boreholes data at specific locations. To provide 
this and to eliminate the drawbacks of unconditional simulation, such as 
the unconformity of measured values, the conditional simulation for 
selected parameters was made using the geostatistical method. Due to 
the dominant role of surcharge load in stability and location of CSS of 
soil slopes, it is considered a random variable with a normal distribution, 
as mentioned in the previous subsection and shown in Fig. 11. Also, to 
evaluate the influence of boreholes’ location on CSS distribution and 
reliability characteristics, 14 arbitrary sections of analysis were 
considered as illustrated in Fig. 3. 

At first, a regression analysis was carried out to identify the de-
pendency of the stochastic parameters. According to the outcomes 
shown in Table 9, the cohesion and friction angle indicates a high de-
pendency. Therefore, the Cokriging technique was applied to evaluate 
these parameters, and the others were evaluated by the Kriging tech-
nique. Since extracting the shear strength is much more costly and time- 
consuming than other soil properties, the shear strength data is limited. 
To tackle this problem, the Cokriging technique was applied to increase 

the interpolation efficiency without having to do more intense sampling. 
Despite the URFEM analysis in which the correlation length is 

calculated from boreholes data, in the current technique, this factor is 
calculated by anisotropy semivariogram analysis. The semivariogram 
has the advantage of analyzing the spatial dependence between samples 
not only in the normal direction but also in an oblique direction, which 
can be regarded as the superiority of the geostatistical method. Since 
there are various anisotropic models for semivariogram (e.g., circular, 
spherical, and exponential), the residual sums of squares and coefficient 
of determination (R2) methods were used to determine which model best 
fits the data. Based on the results, the exponential model was selected for 
the stochastic parameters in the current study. 

To tackle the inadequacy of two-dimensional analysis for accurately 
representing the spatial variability of soil properties in the three- 
dimensional space the conditional estimation of soil parameters in this 
study is performed as follows:  

- First, the unknown soil parameters of each depth are interpolated 
based on known data of other boreholes at the same depth using 
Kriging and Cokriging methods, as shown in an arbitrary borehole 
BH1 in Fig. 12.  

- Then, the soil parameters at each level are estimated in the section of 
analysis based on the boreholes’ location using Kriging and Cokrig-
ing methods, as shown in an arbitrary section 5–5 for BH’9 in Fig. 13. 

Fig. 7. Sensitivity analysis of the number of realizations.  

Table 8 
Parameter b estimated from fitted model of boreholes.  

Parameters b(BH.1) b(BH.2) b(BH.3) b(BH.4) b(BH.5) b(BH.6) b(BH.7) b(BH.8) b(BH.9) b(BH.10) b(BH.11) b(BH.12) b(BH.13) b(BH.14) b(BH.15) 

Unit weight  1.50  1.44  1.54  1.50  1.52  1.37  1.40  1.41  1.49  1.44  1.53  1.54  1.52  1.63  1.67 
Friction angle  1.38  1.33  1.25  1.37  1.45  1.41  1.43  1.45  1.61  1.60  1.65  1.57  1.59  1.65  1.69 
Cohesion  1.45  1.41  1.33  1.39  1.53  2.47  1.45  1.52  1.64  1.65  1.68  1.66  1.66  1.70  1.70  

0 10 20 30 40 50 60 70 80 90
-25

-20

-15

-10

-5

0

X-coordinates

Y
-c

oo
rd

in
at

es

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

Fig. 8. The random field of unit weight in the typical realization(kN/m3).  
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Fig. 9. The random field of cohesion in the typical realization (kN/m2).  

Table 7 
The stochastic parameters based on boreholes’ data.  

Soil parameters c (kN/m2) ϕ (Deg.) γ (kN/m3) 

Mean  15.15 20 0.07  17.98 
STD  3.35 3.97  0.52  
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- Finally, the estimated data in the previous step were utilized for 
estimating the soil properties of all elements in the section of analysis 
using the Kriging and Cokriging methods. To do this, only a certain 
number of near neighbors’ known data, which is required to be 
within a particular geographic area (e.g., circular or elliptical) 
around the location, are used. Whereas in geotechnical problems, the 
scale of fluctuation in the y-direction is less than in the x-direction, a 
horizontal ellipse was utilized in this research as a geographic area. 

The conditional simulation of soil parameters through one realiza-
tion for arbitrary sections 3–3 are presented in Figs. 14 to 16. The figures 
imply the inverse correlation between friction angle and cohesion. Be-
sides, the simulated values match the boreholes data, which can be 
accounted for the differences among the unconditional and conditional 
random fields. 

Calculating the essential number of MCS runs 

The obtained value of FS, which gives a quantitative evaluation of 
stability, is generally less accurate because of the uncertainty involved in 
its assessment. To extract the Probability Density Function (PDF) of FS, 
the analysis was repeated as essential due to the acceptable accuracy of 
the outcomes. Recent research [35] used different parameters such as μ, 
σ, and the Coefficient of Variation (COV) to calculate the required 
number of simulations. In this study, a sensitivity analysis was per-
formed using a COV of FS, which is defined as the ratio of the σ to the μ. 
Fig. 17 depicts the variations of COV with the number of MCS runs in 

both URFEM and CRFEM analysis. The sufficient number of simulations 
was evaluated to be 500, and beyond it, no significant change occurred 
in the value of COVs. 

Results and discussion 

In this section, the results of the stochastic analysis of soil slope are 
presented in several subsections. First, the impact of conditional simu-
lation and boreholes’ location on reliability characteristics are evalu-
ated. Then, the effect of conditional simulation on the shape and 
location of CSS is assessed by comparing the outcomes of CRFEM with 
the URFEM analysis. At last, the influence of different soil parameters on 
the variation of CSS is investigated. 

Influence of conditional simulation and boreholes location on reliability 
characteristics 

To assess the impact of the conditional simulation and boreholes 
location on reliability characteristics, the PDFs of FS extracted from 
URFEM and CRFEM in a different section of analysis are plotted in 
Fig. 18. The statistics and probabilistic characteristics of these PDFs for 

Table 9 
Regression analysis of stochastic parameters.  

Parameters Unit weight Friction angle Cohesion 

Unit weight  1.00  − 0.48  0.42 
Friction angle   1.00  − 0.94 
Cohesion    1.00  
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Fig. 12. Prediction of unknown soil parameters in each depth of an arbitrary 
borehole, BH1 (first step). Fig. 11. The random variable of surcharge load (kN/m2).  
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Fig. 10. The random field of friction angle in the typical realization (Deg.).  
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Fig. 15. The conditional random field of spatial variation for friction 
angle (Deg.). 

Fig. 16. The conditional random field of unit weight in the typical realization 
(kN/m3). 

Fig. 17. Variation of COV with the number of realization.  

Fig. 18. The PDF of FS estimated by URFEM and CRFEM method.  

Fig. 14. The conditional random field of cohesion in the typical realization 
(kN/m2). 
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Fig. 13. Prediction of soil parameters in an arbitrary section 5–5 for virtual 
boreholes, BH’9 (second step). 
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the two methods of analysis are listed in Table 10. A comparison be-
tween reliability indices reveals that the conventional URFEM may un-
derestimate or overestimate the reliability index while the CRFEM can 
correctly estimate the uncertainties and offer more dependable results. 
Also, compared to the URFEM, the PDFs obtained from CRFEM analysis 
have relatively small values of σ and relatively large values of μ. These 
considerable variations can cause a significant effect on the stability of 
soil slope by shifting its performance level from a risky zone to the safer 
one, according to the U.S. Army Corps of Engineers [36], which can be 
considered as an aim of reliability analysis [37,38]. 

Influence of conditional simulation and boreholes location on the variation 
of CSS 

The advantage of FEM over other methods of stability assessment is 
determining the CSS without requiring the prior assumption. To assess 
the effect of conditional simulation on a critical slip surface’s shape and 
position, 500 realizations are created by URFEM and CRFEM analysis. 
Fig. 19(a) and 19(b) plot the variation of CSS in the URFEM and CRFEM 
(section 5–5) analysis, respectively. These figures imply the fact that the 
unsafe zone at the top of the slope (L), as summarized in Table 11 for 
both methods of analysis, decreases by utilizing conditional simulation. 
Moreover, taking the boreholes data in stability assessment by using the 
conditional simulation results in a less influential range with lower μ and 

Table 10 
Comparison of the reliability characteristics obtained from CRFEM and URFEM 
analysis.  

Method of analysis Section μ σ COV β 

CRFEM 1–1  1.24  0.15  0.12  1.60  
2–2  1.37  0.18  0.13  2.06  
3–3  1.32  0.19  0.14  1.68  
4–4  1.35  0.23  0.17  1.52  
5–5  1.39  0.20  0.14  1.95  
6–6  1.21  0.25  0.20  0.80  
7–7  1.41  0.24  0.17  1.71  
8–8  1.26  0.19  0.15  1.37  
9–9  1.22  0.17  0.14  1.29  
10–10  1.41  0.16  0.11  2.56  
11–11  1.43  0.20  0.14  2.15  
12–12  1.48  0.22  0.15  2.18  
13–13  1.47  0.17  0.12  2.76 

URFEM 14–14  1.45  0.21  0.14  2.14 
URFEM –  1.30  0.27  0.21  1.154  

Fig. 19. Uncertainties of the CSS extracted from; (a) URFEM analysis, and (b) CRFEM analysis.  

Table 11 
Comparison of the statistical parameters of the L from CRFEM and URFEM 
analysis.  

Method of analysis Section μ σ COV 

CRFEM 1–1  4.23  1.25  0.30  
2–2  3.37  1.27  0.38  
3–3  3.12  1.30  0.42  
4–4  3.25  1.33  0.41  
5–5  3.02  1.32  0.44  
6–6  4.12  1.30  0.32  
7–7  3.41  1.34  0.39  
8–8  3.56  1.29  0.36  
9–9  4.02  1.27  0.32  
10–10  3.01  1.26  0.42  
11–11  3.83  1.30  0.34  
12–12  4.49  1.31  0.29  
13–13  3.46  1.26  0.36 

URFEM 14–14  4.25  1.29  0.30 
URFEM –  5.60  2.26  0.40  

Fig. 20. The PDF of L estimated by URFEM and CRFEM method.  
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σ, which reflects less uncertainty in the CSS. Fig. 20 shows the PDFs of 
the L extracted by two methods of simulation. In line with the results, by 
taking the conditional simulation into account, the mean and standard 
deviation of L decreased by 20–39 % and 8–31 %, respectively. 

Influence of different soil parameters on the variation of CSS 

In the current subsection, the influence of spatial variability of 
different soil parameters on CSS distribution is evaluated. To do this, 
stochastic analyses were conducted by considering the spatial variability 
of each effective soil parameter (i.e., cohesion, friction angle, and unit 
weight) while the other parameters were held constant. The variations of 
CSS for the three cases of soil spatial variability are plotted in Fig. 21(a-c). 

As illustrated in Fig. 21(a), the CSS distribution is less affected by 
spatial variability of soil unit weight than others. In other words, the 
CSSs for the case with only spatially varying unit weight are located 
around the CSS of deterministic analysis, and no local failure occurred in 
this case. As indicated in previous studies [39,40], this phenomenon may 
attribute to a relatively small COV of unit weight compared to the other 
soil parameters. Fig. 21(b) show the CSS distributions for slopes with 
spatially varying friction angle. Compared with the case of spatially 
varying unit weight, this case has relatively large variation ranges of CSS. 
Despite the previous case (i.e., spatially varying unit weight), which can 
only produce the overall CSS, the CSS of this case consists of both local 
and overall. The local CSS refers to a CSS with an entry point or an exit 
point on the slope surface. As shown in Fig. 21(b), although the CSSs of 

this case contain a local type, all the CSSs have an entry point located at 
the top of the slope. In the last case, the variation of CSS for slope with 
spatially varying cohesion is presented in Fig. 21(c). As can be seen, this 
case has the largest variation ranges of CSS. Furthermore, the CSSs of this 
case consists of the overall and the local CSS which an entry point located 
either at the top or surface of the slope. This observation is different from 
the previous cases as plotted in Fig. 21(a) and (b), where only overall CSS 
happens or local CSS enters merely at the top of the slope. 

The importance of identifying the CSS distribution lies in recognizing 
its role in reliability analyses of soil slopes which are rarely considered in 
most of the previous studies. One of the studies which considered the 
effects of soil parameters on the variation of CSS was presented by Qi 
and Li [40]. It was found that local CSS may contribute a large part to the 
probability of failure of a slope and should be well considered in system 
reliability analyses of slopes. Also, it showed that the local failures with 
entry points on the slope surface contribute 5.6 % of the failures, and 
ignoring them may lead to an overestimation of the reliability index. 

Conclusions and recommendations 

This article presents the reliability method for the evaluation of the 
stability and CSS distribution of soil slopes. The necessity for developing 
the proposed method arrived due to the lack of literature on the sto-
chastic analysis of stability and CSS variation of soil slopes, considering 
the known data and its measured locations, conditional simulation, 
uncertainty of surcharge load, and soil heterogeneity. To do this, a real 

Fig. 21. The CSS distribution for spatial variability of different soil parameters (a) unit weight; (b) friction angle; (c) cohesion.  
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soil slope with fifteen 26 m depth boreholes was considered, and the soil 
properties were obtained from geotechnical site investigation and lab-
oratory tests. The deterministic analysis was carried out using a FEM- 
based MATLAB code. After that, the analysis was performed stochasti-
cally by the URFEM and then by CRFEM to implement the known data 
and its measured location. Lastly, the reliability characteristics and CSS 
distribution of URFEM and fourteen sections of CRFEM analysis were 
obtained and compared. Based on numerical analysis, some conclusions 
are made below: 

(1) The results for estimating the optimum number of simulations 
indicated that the 500 MCS runs are sufficient for the stability evaluation 
of soil slope. Moreover, it was revealed that the γ, c, and φ are the most 
effective soil parameters in the stochastic stability assessment of soil 
slopes. 

(2) It was illustrated from the PDFs of FS that incorporating the 
sampled data and its location results in less distributed CSS that de-
creases the μ and σ of the unsafe zone at the top of the slope by 20–46 % 
and 40–45 %, respectively. Also, it improves the mean value of FS up to 
14 % while decreasing the related standard deviation by 4 % to 40 %. 

(3) Ignoring the soil heterogeneity or considering spatial variability 
with small COV can only produce an overall CSS. However, if the spatial 
variability of friction angle is considered, the CSS could be a local one 
with an entry point located at the top of a slope. In the case of spatially 
varied cohesion, the local CSS has entry points at the top of the slope’s 
surface. 

However, the proposed method evaluates the stochastic analysis of 
CSS and stability of soil slopes using geostatistical conditional simulation 
but extracting the overall reliability by combining the reliability indices 
of different sections via system reliability analysis and considering the 
effect of both correlation length and COV of soil parameters on CSS 
variation was not considered. Hence, further research is required to study 
the application of the proposed method in conjunction with the system 
reliability approach, such as the sequential compounding method. 
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